Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 42: 42-48, Nov. 2019. graf, tab, ilus
Article in English | LILACS | ID: biblio-1087459

ABSTRACT

Background: Foods including probiotics are considered "functional foods." As an alternative to dairy products, we investigated the behavior of Lactobacillus casei when exposed to low-pH fruit juice. Juices of fruits such as pineapple, raspberry, and orange were assessed. Free and microencapsulated forms of L. casei were compared, and the viability of the probiotic was evaluated under storage at 4°C for 28 d. Microbiological analyses were carried out to ensure a safe and healthy product for consumers who look for foods with probiotics from sources other than dairy. Results: Low pH affected L. casei survival during storage depending on the type of fruit juice. In the case of pineapple juice, some microcapsules were broken, but microcapsules recovered at the end of the storage period had 100% viability (2.3 × 107 CFU/g spheres). In the case of orange juice, more than 91% viability (5.5 × 106 CFU/g spheres) was found. In raspberry juice, viability decreased rapidly, disappearing at the end of the storage period, which was caused by the absorption of high concentrations of anthocyanin inside microcapsules more than low pH. Conclusion: Low pH affected the survival of L. casei under refrigeration; even when they were microencapsulated, acidic conditions impacted their viability. Although pH affects viability, its value is very sensitive and will depend on the type of fruit juice and its composition. Some fruit juices contain compounds used as substrates for Lactobacillus and other compounds with antimicrobial effects.


Subject(s)
Microbial Viability , Fruit and Vegetable Juices , Lacticaseibacillus casei/growth & development , Vibration , Cold Temperature , Probiotics , Alginates/chemistry , Food Storage , Pasteurization , Hydrogen-Ion Concentration , Anthocyanins
2.
Electron. j. biotechnol ; 18(4): 291-294, July 2015. ilus, graf
Article in English | LILACS | ID: lil-757866

ABSTRACT

Background Polycosanols derived from plant species have traditionally been used in medicine as antiproliferative agents for treating various viruses (primarily the herpes simplex virus). However, few studies have studied their effects on hyperproliferative cell lines. In this work, the antiproliferative capacity of polycosanols from tall-oil pitch, obtained from black liquor soaps in the kraft pulping process of cellulose (specifically from Pinus radiata, Pinus taede, and Eucalyptus globulus), was evaluated on CHO-K1 and CRL-1974 human melanoma cell lines. Results The proliferative capacities and cell viabilities were measured for 72 and 140 h, respectively. Treatment with docosanol produced differential effects on the CHO-K1 and human melanoma cells and significantly affected their proliferation rates, but not their cell viabilities. Tetracosanol produced a significant negative effect on the proliferation of human melanoma cells, and this effect was less than that caused by docosanol. However, it had no effect on the proliferation of CHO-K1 cells and did not induce any significant effect on the viability of the studied cell lines. Conclusion Docosanol and tetracosanol induced antiproliferative effects on the studied cell lines and exhibited significantly greater effects on the oncogenic cell lines. Prior to this study, the capacity of these polycosanols has never been investigated. Future studies will be necessary to determine their mechanisms of action on these cell systems.


Subject(s)
Humans , Plant Oils , Cell Proliferation/drug effects , Fatty Alcohols/pharmacology , Fatty Alcohols/chemistry , Melanoma , CHO Cells , Pinus , Cell Line, Tumor , Eucalyptus
SELECTION OF CITATIONS
SEARCH DETAIL